Week 1

Problem of the Day June

Day 1	What is 8 ¹⁵ / ₁₀₀ written as a decimal?
Day 2	Give an example of an acute angle.
Day 3	How do you subtract 3 - 1 $\frac{5}{8}$? What is the answer?
Day 4	List the factors of 96.
Day 5	Marcus' hens laid 156 eggs. How many dozen can he sell at the farmers market?

Week 2

Problem of the Day June

Day 1	Rename ⁴¹ / ₉ as a mixed number.
Day 2	Manuel spent $\frac{4}{5}$ hour each day baking for six days. How much time did he spend altogether?
Day 3	Compare with <, >, or =. $\frac{13}{11}$ $\frac{12}{10}$
Day 4	Find and continue the pattern: 1.05, 1.10, 1.15,
Day 5	The area of a square is 16 meters squared. How long is one of its sides?

Week 3 Problem of the Day June

Day 1	What strategy will you use to solve 108 × 23? Solve.
Day 2	What strategy will you use to solve 57 ÷ 9? Solve.
Day 3	Order from least to greatest: 3.4, 3.63, 3.9, 3.08, 3.11
Day 4	Decompose 9 $\frac{2}{3}$ in two ways.
Day 5	Lena spent 0.7 of an hour computer programming each day for 7 days. How much time did she spend altogether?

Problem of the Day June

Week 4

٦

Dαy 1	Draw a picture to represent 4 × $\frac{2}{3}$. Solve.
Day 2	Compare with <, >, or =. 560 ÷ 7 20 × 4
Day 3	What is the perimeter of this rectangle? 23 m
Day 4	What is the area of this rectangle? 108 m 17 m
Day 5	Give an example of an obtuse angle in the real world.

Problem of the Day June Answer Key

Week 1

Day 1: 8.15

Day 2: Answers may vary. A possible answer is: An example of an acute angle is when the hour hand on a clock is on the one and the minute hand is on the three.

Day 3: Change 3 to $\frac{24}{8}$ and 1 $\frac{5}{8}$ to $\frac{13}{8}$. Then subtract 24 - 13 and put the difference over 8; $\frac{11}{8}$ or 1 $\frac{3}{8}$. Day 4: 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96

Day 5: **13 dozen**

Week 2 Day 1: $4\frac{5}{9}$ Day 2: $\frac{24}{5}$ or $4\frac{4}{5}$ or 5 hours Day 3: $\frac{13}{11}$ < $\frac{12}{10}$ Day 4: 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35 Day 5: 4 meters

Week 3

Day 1: Multiply 100 by 23 and 8 by 23, then add the products; 2,484.

Day 2: Divide 57 by 9, the answer is the whole number, the remainder will be the numerator; $6\frac{3}{9}$ or $6\frac{1}{3}$.

Day 3: 3.08, 3.11, 3.4, 3.63, 3.9

Day 4: 9 + $\frac{2}{3}$; $\frac{1}{3}$ + $\frac{1}{3$

Day 5: **4.9 hours**

Week 4

Day 1: Answers may vary and should show $\frac{2}{3}$ of 4; $\frac{8}{3}$ or 2 $\frac{2}{3}$.

Day 2: 560 ÷ 7 ____ 20 × 4

Day 3: **98 m**

Day 4: 1,836 square meters

Day 5: Answers may vary. A possible answer is: An obtuse angle can be when the hour hand on a clock is on the two and the minute hand is on the six.

