Problem of the Day June

What is $8 \frac{15}{100}$ written as a decimal? \qquad

Give an example of an acute angle. \square
앙 How do you subtract $3-1 \frac{5}{8}$? What is the answer?
\square

+ List the factors of 96 .

Marcus' hens laid 156 eggs. How many dozen can he sell at the farmers market?

Problem of the Day June

Rename $\frac{41}{9}$ as a mixed number.

Manuel spent $\frac{4}{5}$ hour each day baking for six days. How much time did he spend altogether? \qquad
m
Compare with $<,>$, or $=. \frac{13}{11}$ $\frac{12}{10}$

Find and continue the pattern: $1.05,1.10,1.15$,

The area of a square is 16 meters squared. How long is one of its sides?

Problem of the Day June

What strategy will you use to solve 108×23 ? Solve.

What strategy will you use to solve $57 \div 9$? Solve.

Order from least to greatest: $3.4,3.63,3.9,3.08,3.11$

Decompose $9 \frac{2}{3}$ in two ways.

Lena spent 0.7 of an hour computer programming each day for 7 days. How much time did she spend altogether?

Problem of the Day June

Draw a picture to represent $4 \times \frac{2}{3}$. Solve.

응 Compare with $<,>$, or $=.560 \div 7$ \qquad 20×4

What is the area of this rectangle? 108 m
\square

Problem of the Day June Answer Key

Week 1

Day 1: 8.15
Day 2: Answers may vary. A possible answer is: An example of an acute angle is when the hour hand on a clock is on the one and the minute hand is on the three.
Day 3: Change 3 to $\frac{24}{8}$ and $1 \frac{5}{8}$ to $\frac{13}{8}$. Then subtract $24-13$ and put the difference over $8 ; \frac{11}{8}$ or $1 \frac{3}{8}$.
Day 4: 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96
Day 5: 13 dozen

Week 2

Day 1: $4 \frac{5}{9}$
Day 2: $\frac{24}{5}$ or $4 \frac{4}{5}$ or 5 hours
Day 3: $\frac{13}{11}<\frac{12}{10}$
Day 4: 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35
Day 5: 4 meters

Week 3

Day 1: Multiply 100 by 23 and 8 by 23, then add the products; 2,484.
Day 2: Divide 57 by 9, the answer is the whole number, the remainder will be the numerator; $6 \frac{3}{9}$ or $6 \frac{1}{3}$.

Day 3: 3.08, 3.11, 3.4, 3.63, 3.9
Day 4: $9+\frac{2}{3} ; \frac{1}{3}+\frac{1}{3}$ $+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$

Day 5: 4.9 hours

Week 4

Day 1: Answers may vary and should show $\frac{2}{3}$ of $4 ; \frac{8}{3}$ or $2 \frac{2}{3}$.
Day 2: $560 \div 7$ \qquad 20×4

Day 3: 98 m
Day 4: 1,836 square meters
Day 5: Answers may vary. A possible answer is: An obtuse angle can be when the hour hand on a clock is on the two and the minute hand is on the six.

